好色先生TV

技术主題

什麼是预测性维护?

以燈泡為重點的 IT 專案插圖

概述

预测性维护 結合了有關硬體、軟體和服務元件的數據,以確定機械资产的維護要求。監控新出現的故障、預測容量超支、識別故障和確定剩餘资产壽命都是预测性维护的各個方面。AIOps 是將人工智慧用於 IT 運營,有時用於预测性维护。

长期以来,预测和準备故障一直是机械操作的必经之路。直到最近,在指定时间后例行更换零件是避免零件在使用中出现故障的最常见形式。这种形式的定期预防性维护很有説明。但并非所有零件都以相同的速度失效,根据平均值和近似值,过早更换是浪费。此外,仅依靠定期维护的系统无法检测到过早缺陷部件的实际或即将发生的故障。减少停机时间的另一种策略是在一个部件发生故障时更换所有部件,目前尚不清楚是哪一个,但这种策略具有明显的高成本缺点。

预测性维护

是什麼讓预测性维护如此重要?

還有其他好處。根據行业的不同,合同服務水準協定 (SLA) 可能要求組織嚴格 24×7 全天候提供服務或材料,否則將面臨處罰甚至罰款。在其他情況下,由於供應鏈中斷、庫存損失、客戶流失以及運營放緩導致的其他明顯後果,設備故障可能導致收入損失。预测性维护有助於減輕系統停機的所有這些潛在後果。

使用統計分析、感測器監控、高級分析和人工智慧來更準確地預測故障何時發生,這提供了很大的改進。通過感測器持續監控每個部件的運行狀況,監控系統可以在故障發生之前提醒您。這是實施预测性维护計劃的核心好處:您只需更換近乎有缺陷的零件,從而節省工作力和不必要的零件更換費用,同時保持較長的正常運行時間。此外,一個好的预测性维护系統可以讓您有時間在對業務造成最小干擾的時間安排維護。

预测性维护挑戰

涉及 机器学习和處理超大型數據集的大數據技术已經發展到最大限度地減少停機時間和 MTTR(平均恢復時間)。雖然這些好處是顯而易見的,但現代組織面臨著許多挑戰,包括:

数据密集型流程

對於市場上的大多數分析資料庫來說,大規模訓練和維護長期歷史數據的 ML 模型的需求可能令人生畏。

不同的数据存储

準確的机器学习和其他形式的分析來識別故障模式都需要訪問遠端數據孤島和/或過程數據。聚合不同類型的數據,甚至是相似但不完全相同的數據(例如以不同時間間隔從兩個設備獲取的時間序列數據)可能既耗時又具有挑戰性。

操作机器学习的困難

數據科學的複雜性和專業知識的缺乏可能會阻礙團隊將机器学习用作预测性维护工具箱中的關鍵功能。

误报

當故障警報的規則過於嚴格,或者模型模式定義過於嚴格時,可能會生成大量實際上不需要操作的警報。這可能會導致警報疲勞。能夠修改和持續改進預測是预测性维护的一個重要方面。

简化业务运营,创造客户价值

  • 反应性维护
    系统问题
    客户电话

    现场故障排除
    零件交付
    维修或更换
    系统功能

  • 预测性维护
    远端监控可预测潜在故障
    服务计划
    避免了问题

如何 好色先生TV? Vertica? 讓预测性维护發揮作用

好色先生TV? Vertica? 在生成數據時,甚至可以持續監控來自設備元件的超大型數據集。如果簡單的統計分析就足夠了,則可以在資料庫中輕鬆快速地進行分析。 Vertica 具有超過 650 個內置函數,可以對多種可用於预测性维护的快速分析,例如時間序列分析、事件模式匹配和机器学习。

當机器学习用於執行预测性维护時,維護日誌等數據和多年來收集的任何感測器資訊將累積在數據存儲(如 HDFS 等檔系統)或物件存儲位置(如 S3)中。机器学习模型基於該數據進行訓練,以識別指示潛在問題的模式。然後,從設備及其元件流入新的當前數據,並由該訓練模型進行檢查。當發現潛在問題時,會發送警報。在故障發生之前計劃並採取補救措施。

预测性维护的工作原理圖

资源

我们能提供什麼协助?

脚注