

Position Paper

The Need for a
Software Bill of Materials
Whether you produce, purchase, or operate software, insights
into the supply chain will provide you with a range of bene�ts.

Table of Contents
The Software Bill of Materials .1

What Is a Software Bill of Materials?. ..1

Drivers, Motivators, and Challenges. .5

The Software Bill of Materials: The SBOM File. .10

The Software Bill of Materials: SBOM with Debricked . 16

Conclusion .20

1

The Need for a Software Bill of Materials

The Software
Bill of Materials
SBOM helps provide numerous insights to an organization.
In this position paper, we will discuss several aspects of the SBOM,
including bene�ts and drivers for adoption, and dig a bit deeper
into the actual SBOM �les and formats. But let us start with
de�ning what an SBOM is.

What Is a Software Bill of Materials?

Simply put, the Software Bill of Materials (SBOM) is a listing of all software dependencies that
are included in a software application. It includes not only the direct dependencies used but
also the dependencies used by those dependencies, also known as indirect or transitive
dependencies. As such, it describes the supply chain relationships used when building
the software.

A List of Ingredients
Just like food in the grocery store has a list of ingredients written on the package, we can
think of the SBOM as a list of ingredients for a software application. For people with allergies,
the list of ingredients can be used to verify that it does not contain anything unwanted.

Often, people may want to stay away from unethical or unhealthy content or things with too
many unnatural chemicals used only for preservation, color, or pro�t. The list is mandatory
since we want to allow people to make informed decisions about the food they buy.
The transparency also puts pressure on the manufacturer to not include unnecessary bad
ingredients since the food and the manufacturer can now be judged by the ingredients.

The SBOM serves a very similar purpose. By listing all packages included in a software
application, users will be able to make informed decisions about which applications to use
based on the included packages, and the developers will be incentivized to use up-to-date,
secure, and well-maintained software.

Not Just Ingredients
The analogy to ingredients is often used. Yes, it will show you the components that the
software product consists of. But it does not stop there. Looking at the most common
SBOM formats used today, there is also support for adding valuable metadata about
the components.

Simply put, the Software
Bill of Materials (SBOM)
is a listing of all software
dependencies that are
included in a software
application. It includes
not only the direct
dependencies used but
also the dependencies
used by those
dependencies, also
known as indirect or
transitive dependencies.
As such, it describes
the supply chain
relationships used when
building the software.

The Need for a Software Bill of Materials

This metadata can consist of details on known vulnerabilities for the component. It can
also be detailed license information, i.e., the requirements and the restrictions for including
the component in another piece of software. The metadata can also include how the
di�erent components �t together, i.e., which component depends on other components.
If these relationships are complete, the SBOM can provide the full dependency graph for
all components in the software.

Thus, while the ingredients analogy is easy to grasp, there can be quite a lot more to it if the
SBOM capabilities are fully used.

Bene�ts and Use Cases
The SBOM can be used to provide insights into your software. It is an invaluable enabler for
several business-critical operations related to software development, software management
and software consumption across the value chain.

Not a Silver Bullet
Before discussing the bene�ts, we note that the SBOM does not really solve any problems
on its own. It needs to be accompanied by organizational processes to take advantage of
the data it holds. With technical tools and automations, you will be able to collect, present,
and add business value to the data in the SBOM.

This will make the data actionable and improve software and product security. It will also allow
organizations to be compliant with both licenses and security requirements. Assuming such
tools and processes are in place, let’s look at some of the bene�ts the SBOM will give you.

Security
The main claim for success is risk management and risk reduction, with security being
the most well-known use case. It is easy to argue for the security case. We all want to
avoid a costly data breach. In 2022, the average cost of a data breach was estimated to
be $4.24 million. At the same time, together with phishing, using known vulnerabilities are
the two main attack vectors seen today. Now, add to this that the number of discovered
vulnerabilities is constantly increasing.

With the SBOM listing all software dependencies, it is possible and feasible to assess if any
of these dependencies have known security vulnerabilities. And if they do, we know to patch
them. Without the SBOM, or at least without the detailed insights into the supply chain that
the SBOM provides, there would be no way of really knowing if the software is vulnerable
or not.

This is a game changer for those purchasing and using the software. If there is a new
vulnerability, they can immediately assess if they are exposed.

The main claim
for success is risk
management and risk
reduction, with security
being the most well-
known use case.
It is easy to argue
for the security case.
We all want to avoid a
costly data breach.

2

3

The Need for a Software Bill of Materials

License Compliance
Another bene�t is license compliance. Every time we include code written by someone else,
e.g., Open-Source Software (OSS), we are using copyrighted code. We cannot use that code
without a license. The license will tell us what we are allowed to do with the code and under
what circumstances.

In some cases, the restrictions and our obligations are rather heavy if we want to include the
code in distributed software. With the SBOM, we get insights into third-party dependencies.
Then we can also know what licenses apply to the di�erent dependencies. These licenses
can also be written directly in the SBOM.

Dependency Health
Security and license compliance are the two bene�ts that are most often discussed in the
SBOM context. At the same time, we see that the use of OSS is increasing, and today’s
codebases have around 80–90% OSS. This increased dependency on OSS presents new
challenges, some of which the SBOM can help meet.

One thing that many organizations are struggling with is how to choose the best OSS
component for a speci�c task. There can be lots of OSS projects supporting similar
functionality, so which one should we choose? This question is more important than it may
seem at �rst. You want a project that has ongoing community support, not one that was or
will be abandoned soon. You also want a project that will patch vulnerabilities, otherwise,
there is no safe version to upgrade to, and you must patch the source yourself.

You may also want to choose a project that engages experienced developers, a project with
reasonable documentation, and perhaps a project with an active core team. Though there
are no current security vulnerabilities or license compliance risks, all these properties will
contribute to a forward risk.

Having a software inventory through the SBOM will help in analyzing the software
dependencies for such forward risks. An automated tool, such as OpenText™ Debricked,
will automatically scan the SBOM and present you with a range of metrics that will help
you understand the health of your software dependencies.

Increased Transparency
The bene�ts do not stop here. Using the data to assess security, license compliance, and
health can be seen as very direct bene�ts. But we also need to consider the e�ect of having
to supply an SBOM when software is distributed or sold to customers. With the SBOM,
the software is no longer a black box. There is transparency in what you deliver.

The software provider can no longer hide bad practices when it comes to patching and
t cnot stop here. Using dUsing
when it comes irlli[(w)2 (rmd6egO0s when it co06uUanalyzgdUsef-miJ
T*
 avoidsonable docum9ider facg dUlegalr hi pem 9 >>BDC
/TET
/Antrfact2.73Type /Pdev 0 0 9.5 Figuger<<0 0 9.5 ClipSppraB
/Tq5 ClipaB
/TTm
[6�92obl
W nDC
/T0.2 0.2 0.6 mo scn
/GS0 gsTq51Tm
[(I 461.2752[6�.6 cmTTm
[m
e p982ncie5.4re p418ie5.4re5.4rc
e5.4re 01.5ck)l
e5.4re 04.487 e p982ne 06.907 Tme 06.907 c
1�.2ne 06.907 l
1�en82ne 06.907 120.6re 04.487 120.6re 01.5ck)c
120.6re5.4rl
120.6re p418i1�en82n[(I�.2n0)c
h
f
QDC
/TE
/TE
/TQ
BT0 -2.737 TD
(0 0 10 31 1 1 scn
/GS0 gsT 38.1312 228.7 Tm
[8.7 467.8776 594.885nse cntory through the ot stop h294ider SBOM will help in BOM when nalyzing the softwaBOM whenre)Tj
-0.002 ough the ot swhenforward risksis no lon. An automated too8, suc seen as h as

The Need for a Software Bill of Materials

When customers have insight into the components of an application, they can also check for
security vulnerabilities, license compliance, and scrutinize the software for out-of-date and
unsupported components. And by doing this, they can judge their suppliers by their practices
in choosing and maintaining dependencies.

This clearly incentivizes better practices on the supplier’s side. Security vulnerabilities will
a�ect the customer if they are exploited, so the customer can put pressure on the supplier
to have patched software in the applications. This will lead to better, more secure, and
compliant software.

Stronger Supplier-Customer Relationships
The supplier can also use the SBOM as a chance to get stronger relationships with their
customers. Consider an organization that chooses between two suppliers, one of them is
able to provide a detailed and up to date SBOM, while the other is not willing or able to do
so. As a customer, which one would you choose?

In one case, you will be in control of vetting the software yourself if you wish, and the supplier
is also incentivized to have good software practices for their third-party components.

In the other case, you are buying a black box without any possibility of scrutinizing the
application’s components. And why are they not providing an SBOM? Is it because they just
don’t have the tools or knowledge to produce one, or is it because the software has known
vulnerabilities? Or do they not know if there are vulnerabilities or not? Are they using tons of
outdated software? Do they even know if they do? None of the reasons are very �attering,
and all other things equal, the supplier would surely go for the supplier that provides an SBOM.

The SBOM will also facilitate an ongoing discussion between the supplier and the customer.
Why did you choose this software? Are we vulnerable to this new CVE related to an included
component? Yes, there will likely be more questions from customers, some good and some
less relevant, but it is a chance for the supplier to show good practices throughout the
software lifecycle. This will increase con�dence in the supplier and improve the relationship
between the customer and the supplier.

Reduce Remediation Costs and Time-to-Market
Fixing security problems is more costly the later they are done. Updating to a secure version of
a dependency can be easily done at development time. If you do it later, there will be added
complexity. Updating software that is in production or that has already been distributed can
be very costly.

Using SBOMs and an accompanying process for keeping track of vulnerabilities, licenses,
and health information will allow developers to �nd problems quickly. This will also reduce
the remediation cost. In fact, having an SCA tool for keeping track of all these things related
to dependencies will probably quickly pay o� when vulnerabilities, licenses, and health are
continuously monitored.

5

The Need for a Software Bill of Materials

With carefully considered choices for third-party dependencies, there will hopefully be
fewer problems with this software in the future. This includes fewer vulnerabilities, faster
patch processes, no license issues, and better-maintained software. Less added complexity

The Need for a Software Bill of Materials

Proposed DHS Law
Related is the H.R.4611—DHS Software Supply Chain Risk Management Act of 2021, which is
a proposed law that will require contractors to the Department of Homeland Security (DHS) to
submit an SBOM together with a certi�cation that there are no security vulnerabilities in the
software. Alternatively, if there are known vulnerabilities, they must provide a list of these.

The EU Cyber Resilience Act
In the EU, there is a proposal for a regulation for cybersecurity requirements, the Cyber
Resilience Act. Regulations are mandatory to follow for all member states. Among other
things, the Cyber Resilience Act requires manufacturers to draw up an SBOM. Di�erent from
the U.S. regulations, this EU regulation will apply to all manufacturers of products with
digital elements that connect to a device or a network. On the other hand, only top-level
dependencies need to be included in the SBOM.

FDA Requirement
For speci�c markets, the FDA is currently pushing for an SBOM to be a mandatory
requirement for healthcare products. This is in response to an increased number of
cybersecurity incidents in healthcare, as, e.g., reported by Forbes. Moreover, patient data
protected by healthcare products are typically very sensitive, and service disruption by
these products can jeopardize the life of people.

Other Guidelines
In addition, guidelines from the National Highway Tra�c Safety Administration mention SBOM
as a means to track vulnerabilities in the vehicle development process. These guidelines are
non-binding and voluntary but underline the importance perceived throughout several verticals.

The Cybersecurity Threat Landscape
Requirements and legislation will drive the adoption, but these requirements emerge
from the actual need in industry and society. The cybersecurity threat landscape is present
with or without regulations, and many businesses adopt SBOM practices regardless of
external requirements. Let us take a brief look at the cybersecurity threat landscape and
how it is developing.

New Vulnerabilities
First, the number of vulnerabilities registered as CVEs in the National Vulnerability Database
is increasing. In 2017, the number of new vulnerabilities jumped to more than 14,000 after
previously never exceeding 8,000 in a year. Since then, the number has steadily increased,
and in 2022 it surpassed 25,000.

There are more vulnerabilities if we include the GitHub Advisory Database and those that
are language speci�c, e.g., FriendsOfPHP and the Python Packaging Advisory Database,
but there are signi�cant overlaps.

Requirements and
legislation will drive
the adoption, but these
requirements emerge
from the actual need
in industry and society.
The cybersecurity
threat landscape is
present with or without
regulations, and many
businesses adopt SBOM
practices regardless of
external requirements.

7

The Need for a Software Bill of Materials

Exploiting Vulnerabilities Is a Common Attack Vector
A known vulnerability can be used as an attack vector in a breach. With many vulnerabilities
across a range of applications, there are more opportunities to mount attacks. Surely enough,
looking at the top attack vectors as observed by IBM Security X-Force in the 2022 report,
34% was due to exploiting vulnerabilities, second only to phishing. Thus, �xing security
vulnerabilities must be top-of-mind for organizations relying on software applications
in their business.

Cost of Breaches
So, clearly, there are not only breaches due to security vulnerabilities, but they are prevalent.
Add to this; a breach is very costly. The global average cost of a data breach caused by a
vulnerability in third-party components is estimated to be $4.55 million. If you do not take
application security seriously, it is just a matter of time before it happens.

In all, the cybersecurity threat landscape calls for investing in application security. The alternative
is just too costly. With assessing and remediating security vulnerabilities being a top SBOM
use case, it is natural to adopt it.

Reliance on Software
Software is shaping our society, and every day we have become increasingly reliant on
software. In the smart city, we try to optimize for sustainability and e�ciency through sensors,
actuators, databases, communications, and processing.

The data that is collected, processed, and stored will often be sensitive, so we need
con�dentiality. Also, integrity protection is needed to ensure that the data is not modi�ed in
transit or at rest. All parts and their functionality are controlled by software.

Since software in�uences how we live and work, the need to have better insights into its
inner workings becomes more important. The SBOM can be used to provide at least parts
of this insight.

Challenges
From the previous discussion, it should be clear that SBOMs are here to stay. But, when
generating and working with SBOMs, there are several challenges to consider. It’s not just to
generate an SBOM and call it a day. Having an SBOM is not worwitr1d

The Need for a Software Bill of Materials

Missing Components
If information is missing, e.g., there is an open-source software component that is used but
not included in the SBOM, then this poses a risk to the receiving organization. It could mean
critical vulnerabilities that cannot be listed and assessed. It can also mean that the application
uses a component with a non-permissive license in a way that violates the license. In addition
to the security and license compliance risks, incomplete SBOMs will reduce the trust in the
provider and can delay the time-to-market for an application.

Missing Information
The same is true for open-source components that are included, but information about
the component is incomplete. In many cases, vulnerability information is written directly
in the SBOM. Then, if vulnerability information is only taken from NVD, there will likely be
vulnerabilities that are present but not included.

Known Unknowns
It can be argued that an incomplete SBOM can be worse than no SBOM at all. If we think the
SBOM is complete, we will have a false sense of security, perhaps letting the guard down and
not being fully prepared to handle an exploited security vulnerability. With knowledge of a
vulnerability, even if it is not patched, other measures can be taken to avoid exploitation
and breaches.

To help with “known unknowns,” the common SBOM formats have support for indicating if a
dependency relationship is (possibly) incomplete or if all relations have been accounted for.

Up to Date
An SBOM is not a one-o� thing. It is a moving target that needs to be kept up to date.
Having an outdated SBOM comes with the same risks as having an incomplete one,
erroneous data.

The SBOM can become outdated for di�erent reasons. An application continuously
developed and updated will soon have an outdated SBOM. New dependencies will be
used, some will be updated to newer versions, while others might be removed.

Any assessments based on outdated SBOMs risk having errors. Vulnerabilities can be
missed, while some might already be �xed. The �rst is a security problem, and the latter
gives overhead for developers and security analysts since there will be false positives in
the assessment.

Outdated External Data
The SBOM can also be outdated in terms of the external data it can provide. Security
vulnerabilities are constantly discovered. If the SBOM includes a list of known vulnerabilities,
e.g., CVE identi�ers, such a list will be outdated as soon as there is a new vulnerability
a�ecting any of the included components.

Any assessments based
on outdated SBOMs
risk having errors.
Vulnerabilities can be
missed, while some
might already be �xed.
The �rst is a security
problem, and the latter
gives overhead for
developers and security
analysts since there will
be false positives in
the assessment.

8

9

The Need for a Software Bill of Materials

This should come as no surprise and looking at the guidelines for how to use the SPDX
speci�cation, it is even explicitly stated that “SPDX consumers should always assume
vulnerabilities enumerated by an SPDX creator to be out-of-date.” The need for having
up to date SBOMs makes it important also to include a timestamp.

Automation and SCA
To help generate the SBOM, automation is almost always necessary. There are just too
many dependencies in software today, and there is too much information that needs to be
collected and to keep up to date to do it manually. An automated tool is less error-prone and
can generate a full SBOM in a fraction of the time compared to manual processes.

Instead of having to constantly update the SBOM due to external changes, an SCA tool can
be used to keep track of vulnerabilities, alert you when they arise, and even help you to �x
them. This will always provide an up-to-date view of the risks. For developers, by integrating
the code repositories with the SCA tool, the view will also update when there are new or
updated components.

Actionable
The SBOM is useless if the information in it is not used. It cannot do anything on its own,
which is why it is crucial that it is actionable. This means that both the content of the SBOM
needs to be in a format that can be easily consumed and that its content can be used for the
use case it is generated for. It also means that there need to be organizational processes in
place to use the SBOM when it is received.

Targeting the Use Case
An SBOM with only license information could be su�cient if only license compliance is
considered, but not if you need to certify that there are no vulnerabilities. If you want to use
the SBOM to create an attribution report for your use of open-source software, the license
text also needs to be included. It is not enough with the license name.

Concluding
The current threat landscape with an increasing number of vulnerabilities and attacks should

https://debricked.com/blog/sca-tools-overview/

The Need for a Software Bill of Materials

The Software Bill of Materials: The SBOM File

There are a few di�erent formats for storing and encoding SBOM information. The most well-

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

11

The Need for a Software Bill of Materials

https://spdx.dev/specifications/

The Need for a Software Bill of Materials

SECURITY INFORMATION IN EXTERNAL REFERENCES

An important �eld is the one for external references. This �eld can be used to refer to an
external source for more information about the package.

One de�ned category for external information is security, which can be used to link to
advisories, �xes, or URLs with security-related information. The advisory can include links to
CVEs, the vendor’s vulnerability disclosure document, or even security information formatted
in a CycloneDX SBOM �le.

FILES AND SNIPPETS

Following information about a package, it is also possible to add information about speci�c
�les inside a package. Such information is given in a separate section after the corresponding
package section. Further details can be given in yet another section referring to speci�c
snippets inside a �le. These snippets can be referenced by byte ranges or line numbers
and can have licenses that are di�erent from the rest of the �le or from the package.

DESCRIBING THE DEPENDENCY GRAPH

In the package, �le, and snippet sections, the data given in each element is independent of
the others. The relationship between a package and its �les is implicit in that the �les section
follows the corresponding package section. But there can also be relationships between
�les and, maybe more importantly, relationships between packages. One package typically
depends on another package, and there are transitive dependencies such that one package
will depend on a package that, in turn, depends on a third package, etc.

These relations between components are described in their own section. The relationship
can be one of many but “depends on” and “dependency of” are useful for describing the
dependency graph for the software.

The relation can also be marked to indicate that a part of the graph might be incomplete or
that the creator assures that it is complete.

Inside the CycloneDX SBOM File
Similar to SPDX, CycloneDX starts with identi�cation information and metadata. This speci�es
that it is a CycloneDX SBOM, which speci�cation version it conforms to, and the SBOM
version for that particular software. Then there is, e.g., a timestamp and an identi�er for
the tool used to generate the SBOM (or the author if it was manually generated).

COMPONENTS

Following the metadata, the components are described. The component type is de�ned as,
e.g., �le, container, library, or application. Some notable component information includes the
component’s type, name, and version.

Similar to SPDX,
CycloneDX starts
with identi�cation
information and
metadata. This speci�es
that it is a CycloneDX
SBOM, which speci�cation
version it conforms
to, and the SBOM
version for that
particular software.

https://cyclonedx.org/docs/1.4/json/
https://cyclonedx.org/docs/1.4/json/

13

The Need for a Software Bill of Materials

To make it uniquely identi�able, it can also include one or several of the CPE, PURL or SWID
identi�ers. This will allow the SBOM �le to be used to identify and monitor new vulnerabilities
in the software. The component information will also include license information. It will hold
the license ID but can also include the license text itself or a URL pointing to the license �le.
Each component can also include a bom-ref identi�er which can be used to reference the
component in other parts of the SBOM.

SERVICES

Separate from components, it is also possible to list services, e.g., microservices. The SBOM
can then be used to de�ne if using a service crosses a trust boundary if it requires
authentication and speci�c API endpoints for a service.

EXTERNAL COMPONENTS

CycloneDX has also support for adding external references. These can be either declared
as part of a speci�c component or be de�ned outside the components part of the SBOM.
External references are added in the form of URLs to the information.

DESCRIBING THE DEPENDENCY GRAPH

The relationship between dependencies is documented in a separate part. It is here possible
to refer to a component using the bom-ref attribute and to declare which other components
it directly depends on. Doing this for all components will provide a dependency graph of the
software that represents both direct and transitive relationships between dependencies.

COMPOSITIONS AND ASSEMBLIES

CycloneDX has also support for describing compositions, which is a collection of
components, services, and dependency relationships. A composition can describe an
assembly which can be seen as a well-de�ned part of the software or application that,
in turn, can include other parts in a nested fashion. The composition can also be described
with dependencies, which are parts of the software that requires other independent parts.

VULNERABILITIES

Vulnerabilities are described explicitly in a separate part of the CycloneDX SBOM.
A vulnerability description refers to the bom-ref of the a�ected component and can include
several pieces of information. This includes the vulnerability ID, the publisher, references,
the CWE identi�er, CVSS information, a description of the vulnerability, advisory information,
timestamps, etc.

It is also possible to include analysis details for the vulnerability, e.g., describing it as
resolved, exploitable, in triage, or not a�ecting the component or service, including a
justi�cation for this assessment.

Vulnerabilities are
described explicitly in
a separate part of the
CycloneDX SBOM.
A vulnerability
description refers
to the bom-ref of the
a�ected component
and can include several
pieces of information.

The Need for a Software Bill of Materials

SIGNING DATA

Finally, the complete SBOM can also be signed using a JSON-formatted digital signature,
including the public veri�cation key and a certi�cate path. In addition to signing the
SBOM, individual parts, such as components, services, and compositions, can also be
individually signed.

COMPARING SPDX AND CYCLONEDX

SPDX and CycloneDX share the support for the main use cases in that both licensing
information and vulnerability information is supported. However, they di�er in the extent of
the support. Looking at the speci�cations, it is clear that SPDX leans more heavily towards
the licensing use case, while CycloneDX has more support for vulnerability information.

LICENSE INFORMATION SUPPORT

As an example for license information, SPDX adds a speci�c �eld for “concluded license,”
which can be used if the license can not be determined or if there has been no attempt
to �nd it. It also has a �eld for collecting all licenses in the �les of a package and adding
comments to the licenses.

15

The Need for a Software Bill of Materials

Software Identi�cation (SWID) Tags
As noted above, NTIA also includes the possibility of using Software Identi�cation (SWID)
Tags as an SBOM format. A SWID tag can include the information needed for transparency in
the open source software supply chain, but its main use case is somewhat di�erent. A SWID
tag is designed for tracking installed software throughout the lifecycle. Here, throughout
the lifecycle is supported by de�ning di�erent types of tags for pre-installed and installed
software, as well as patch tags, to de�ne patches to software and supplemental tags for
additional information.

The XML-formatted SWID tag will include information about the software, its license, and the
�les needed to install the software. It can also include information on what other packages
are needed as a prerequisite for installation. This will allow for the automated installation of

The Need for a Software Bill of Materials

Concluding
Having well-de�ned formats for storing, communicating, and encoding SBOM information is
vital for its adoption. Both CycloneDX and SPDX have been widely adopted, and it seems that
the current trend is that CycloneDX is getting the most attention. This can be attributed to the
fact that the recent drivers, e.g., the Biden executive order and the EU cyber resilience act,
are heavily focused on the security bene�ts for SBOMs.

In the �nal section, we will show how Debricked supports both exporting and importing of
SBOMs to help you stay on top of security and license compliance.

The Software Bill of Materials: SBOM with Debricked

With Debricked, it is easy to both generate and analyze an SBOM, and there are several ways
of doing both. In this post, we look at some of the possibilities to create and scan SBOM �les
with Debricked.

At Debricked, we favor and currently support the CycloneDX format for SBOMs. This is not
to say that there are no use cases that are a better �t for the SPDX format. Still, we believe
that the license support in CycloneDX is su�cient, and the additional vulnerability �elds it
provides are very useful.

Generating an SBOM
Generating or exporting an SBOM is available for our enterprise-tier customers. If you have
integrated your repositories with Debricked, an SBOM can be generated as a report. You can
choose to generate the SBOM for a single repository or a chosen set of repositories, or you
can generate a global report for all your integrated repositories.

16

Figure 1. Generating reports
in the Debricked interface

At Debricked, we favor
and currently support
the CycloneDX format
for SBOMs. This is not to
say that there are no use
cases that are a better
�t for the SPDX format.
Still, we believe that
the license support in
CycloneDX is su�cient,
and the additional
vulnerability �elds it
provides are very useful.

17

The Need for a Software Bill of Materials

The SBOM will be generated as a JSON �le and emailed to the email address associated with
your account.

Some of the things that will be found in the SBOM generated by Debricked are:

• All dependencies, including transitive dependencies, together with their CPE and/or PURL
identi�er.

• The identi�ed license for the dependencies. Both the SPDX license short name and the
actual license text is provided. As external references, we also point to the URLs of the
actual license information. This reference is denoted “Proof of License” and enables
anyone to �nd the license �le easily.

• The vulnerability data for each dependency. This data includes the vulnerability identi�er
(CVE, GHSA, etc.), the source, the CWE, a description of the vulnerability, references to
more information, the CVSSv2 and CVSSv3 scores, and dates when it was published and
last updated.

• Relations between dependencies. All dependencies are listed for each library, providing
the complete dependency graph for all open-source components. If a library has no
dependencies, this is indicated with an empty list.

Using the API
If you prefer to use our API, the SBOM can be generated using the corresponding endpoint.
There are a few API endpoints to choose from, and we refer to the API documentation for a
complete overview. One of them is to simply generate an SBOM based on a selected set of
repositories, as shown below.

Figure 2. Excerpt from the Debricked API documentation

If you prefer to use our
API, the SBOM can be
generated using the
corresponding endpoint.
There are a few API
endpoints to choose
from, and we refer to the
API documentation for
a complete overview.

The Need for a Software Bill of Materials

Here you can choose if you want to include vulnerability and/or license data as well. Using the
API will require an access token. A refresh token can be generated in your Debricked account,
which can be used to generate a JWT token. Or you can just use your login ID and password
to generate a JWT token immediately.

Uploading and Analyzing an SBOM
If you have an SBOM and want it analyzed, Debricked can do it for you. We even monitor the
dependencies for new vulnerabilities, and we can alert you if any are found.

Manual Upload
The easiest way to analyze an existing CycloneDX SBOM is to upload it in the Debricked GUI.
Just go to Repository settings, and click the Manual scan button.

Figure 3. You can manually
drag and drop an SBOM
to have it scanned

Here you can select the SBOM �le or just drag and drop it. The SBOM will show up as a new
repository, listing all vulnerabilities, licenses, and dependencies. If there is a new vulnerability,
it will also show up in the user interface.

18

If you have an SBOM
and want it analyzed,
Debricked can do it for
you. We even monitor
the dependencies for
new vulnerabilities,
and we can alert you
if any are found.

19

The Need for a Software Bill of Materials

Adding SBOM to a Repository
The manual scan option will show new vulnerabilities in the UI. If you want to be alerted, e.g.,
with an email, every time there is a new vulnerability, then you can simply add the SBOM to
be scanned as part of the CI/CD. When scanning the repository, Debricked will �nd the SBOM
�le and scan it for new vulnerabilities.

Upon a scan, you can set up an automation rule to trigger existing or new vulnerabilities.
You can tailor the automation rule to, e.g., trigger an alert if the vulnerability is of high
or critical severity. Below, we show an example that will send an email to all Debricked
account administrators upon a scan if there is a new vulnerability or a vulnerability with at
least high severity.

Figure 4. Adding a new automation rule

This will allow the administrators to be reminded of high-severity vulnerabilities on every
scan but only to be alerted to lower-severity vulnerabilities once. Also, vulnerabilities that
have been triaged not to a�ect the organization or software will not cause any alerts. This is
ensured by checking the box “Ignore una�ected vulnerabilities.”

Upon a scan, you can set
up an automation rule to
trigger existing or new
vulnerabilities. You can
tailor the automation rule
to, e.g., trigger an alert if
the vulnerability is of high
or critical severity.

The Need for a Software Bill of Materials

Let us look at an example of how you can use GitHub for monitoring and alerting on
identifying new vulnerabilities. To trigger a scan, you use a scheduled GitHub actions
work�ow. Work�ows are added to the .github/work�ows subfolder. For Debricked, the
work�ow can look like this.

name: Debricked scan
on:
schedule:
- cron: “0 9 * * *”
jobs:
vulnerabilities-scan:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: debricked/actions/scan@v1
env:
DEBRICKED_TOKEN: ${{ secrets.DEBRICKED_TOKEN }}

This will run a new scan of the SBOM every day at 9 am and trigger alerts according to the
automations rule above.

It is, of course, possible to do similar scheduled scans if you are using other CI/CD tools.

Conclusion

Since Debricked supports scanning and monitoring SBOMs, the SCA tool is not only for
software producers and developers. It is also a powerful tool for purchasers and consumers.
Debricked will handle the automation and interoperability parts, monitor new vulnerabilities
and license changes, and alert you on any signi�cant changes.

Once the requirements to supply an SBOM together with software products are met, all
stakeholders throughout the value chain will be able to better understand the products’
security. This will lead to more secure products, better responses to new vulnerabilities, and
transparency in the software supply chain.

Register for Debricked for free and take full control of security, compliance and health with a
toolkit that will revolutionize the way you use open source.

Register for Debricked
for free and take full
control of security,
compliance and health
with a toolkit that will
revolutionize the way
you use open source.

20

Connect with Us
www.opentext.com

	The Need for a Software Bill of Materials
	Table of Contents
	What Is a Software Bill of Materials?
	Drivers, Motivators, and Challenges
	The Software Bill of Materials: The SBOM File
	The Software Bill of Materials: SBOM with Debricked
	Conclusion

