

Table of Contents
Developer Guide to the 2023 OWASP Top 10 for API Security .1

API Security Cheat Sheet . 2

De�nitions . 3

API1:2023—Broken Object Level Authorization . 4

API2:2023—Broken Authentication . 5

API3:2023—Broken Object Property Level Authorization . 6

API4:2023—Unrestricted Resource Consumption . 8

API5:2023—Broken Function Level Authorization . 10

API6:2023—Unrestricted Access to Sensitive Business Flows . 11

API7:2023—Server Side Request Forgery . 12

API8:2023—Security Miscon�guration . 14

API9:2023—Improper Inventory Management . 16

API10:2023—Unsafe Consumption of APIs .17

The API Security Top-10 Is Not Su�cient! . 19

Conclusion . 19

Where to Go Next .20

1

Developer Guide to the 2023 OWASP Top 10 for API Security

Developer Guide
to the 2023 OWASP
Top 10 for API Security
As companies have adopted cloud-native infrastructure and DevOp-style methodologies,
Web application programming interfaces, or APIs, have proliferated. Some of the most popular
public APIs include those that allow developers to access Google Search, scrape data from
TikTok, track vehicles, gather sports scores, and collect data on image downloads from popular
sites .1 In 2023, API-related tra�c accounts for 58% of all dynamic—de�ned as non-cacheable—
tra�c, up from 54% at the end of 2021 .2

APIs have become the way for enterprise applications to communicate and integrate with
each other as well. Companies use about two-thirds of their APIs (64%) to connect their
applications to partners, while about half (51%) are access points to microservices. Overall,
more than three-quarters of �rms use an average of at least 25 APIs per application .3

The adoption of API-based application infrastructure should come as no surprise:
Companies that adopt APIs to attract third-party developers and create ecosystems see
increased growth. These “inverted �rms”—so called because they �ip the traditional concepts
of creating barriers around technologies and allow open access to some capabilities and
data—grew by nearly 13% over two years, and 39% over 16 years, compared to �rms who
did not adopt APIs, according to a 2022 paper by researchers at Chapman University and
Boston University.4

With the adoption of microservices, containerization, and APIs, however, comes a variety
of risks, such as insecure software components, poor business logic, and �awed data
security. Nine-in-ten organizations (92%) have su�ered at least one security incident related
to insecure APIs . 5 Large companies typically have thousands of APIs and attacks on those
systems account for about 20% of security incidents, while smaller companies have hundreds
of APIs whose smaller attack surface accounts for 5% of security incidents .6 Annual losses
due to breaches caused by API vulnerabilities exceed $40 billion globally, according to an
estimate by Marsh McLennan .7

The problem is so serious that the US National Security Agency teamed up with the
Australian Cyber Security Centre (ACSC) and the U.S. Cybersecurity and Infrastructure
Security Agency (CISA) to o�er guidance on API security issues, especially the most common,
known as insecure direct object reference (IDOR) vulnerabilities .8

Unsurprisingly, against this backdrop of burgeoning security concerns, the Open Worldwide
Application Security Project (OWASP) released an update to its API Security Top-10 list.

1. Arellano, Kelly. “The Top 50
Most Popular APIs.” RapidAPI
Blog. RapidAPI. Web Page.
16 March 2023. https://
rapidapi.com/blog/most-
popular-api/ .

2. Tremante, Michael, et al.
“Application Security Report:
Q2 2023.” Cloud�are Blog.
Cloud�are. Blog post. 21 Aug
2023. https://blog.cloud�are.
com/application-security-
report-q2-2023 /.

3. Marks, Melinda. “Securing
the API Attack Surface.”
Enterprise Strategy Group.
Sponsored by Palo Alto
Networks. PDF Report,
p. 10. 23 May 2023.
www.paloaltonetworks.com/
resources/research/api-
security-statistics-report .

4. Benzell, Seth G., et al.
“How APIs Create Growth
by Inverting the Firm.” Social
Science Research Network.
Research Paper. Revised:
30 Dec 2022. https://papers.
ssrn.com/sol3/papers.
cfm?abstract_id=3432591 .

5. “Securing the API Attack
Surface.” Enterprise
Strategy Group, p. 14.

6. Lemos, Robert. “API Security
Losses Total Billions, But It’s
Complicated.” Dark Reading.
News Article. 30 June 2022.
www.darkreading.com/
application-security/api-
security-losses-billions-
complicated .

7. Marsh McLennan. “Quantifying
the Cost of API Insecurity.”
Sponsored by Imperva.
PDF Report. 22 June 2022.
www.imperva. com/resources/
reports/Imperva-Marsh-
McLennan-Report-2022.pdf .

8. “New Cybersecurity Advisory
Warns About Web Application
Vulnerabilities.” National
Security Agency. Press
Release. 27 July 2023. www.
nsa.gov/Press-Room/Press-
Releases-Statements/Press-
Release-View/Article/
3473830/new-cybersecurity-
advisory-warns-about-web-
application-vulnerabilities/ .

Developer Guide to the 2023 OWASP Top 10 for API Security

2

Refreshing its inaugural 2019 list, the 2023 API Security Top-10 list highlights the ten most
common and serious security risks created when developing applications that expose or
use APIs. Issues such as Broken Object-Level Authorization, a superset that includes IDOR
vulnerabilities, remains the same from the prior list. Yet, new categories—or reorganized
categories—now highlight issues overlooked in the past, such as Server-Side Request
Forgery (API7:2023) and Unrestricted Access to Sensitive Business Flows (API6:2023).

“By nature, APIs expose application logic and sensitive data such as Personally Identi�able
Information (PII) and because of this, APIs have increasingly become a target for attackers,”
the OWASP group stated in its announcement . 9 “Without secure APIs, rapid innovation would
be impossible.”

API Security Cheat Sheet

3

Developer Guide to the 2023 OWASP Top 10 for API Security

De�nitions

API Endpoint—The point of communication between two systems, typically a URL of a
container or server running a microservice. Using an URL, an application or developer
can request information from the server or execute an action on the API server or
microservice.

API-Related Tra�c—Internet tra�c that consists of an HTTP or HTTPS request and
has a response content of XML or JSON, indicating that data is being passed to an
application, usually through SOAP, WSDL, a REST API, or gRPC (see below).

Dynamic Application Security Testing (DAST)—The process of analyzing an application
or API server by using the interface, whether the user interface for an application, a web
front end for a web application, or URLs for API endpoints. At type of black-box testing,
this approach evaluates an application from the “outside in” by attacking an application
in the same way as an attacker, usually without knowledge of internal processes.

Static Application Security Testing (SAST)—An approach to application security that
scans the source, binary or byte code for recognized patterns of errors or vulnerabilities.
Sometimes referred to as white-box testing, SAST uses an “inside-out” approach that
identi�es potential vulnerabilities and errors that may, or may not, be exploitable by an
external attacker. Lightweight static tools can provide real-time feedback to developers
in their IDE.

SOAP/WSDL—An XML-based protocol for creating Web APIs. SOAP is the protocol
itself and WSDL (Web Service De�nition Language) is the format used to formally
describe services. Due to the heavy overhead, this API style has become unpopular
for new developments.

Developer Guide to the 2023 OWASP Top 10 for API Security

4

2023 API Security Top 10

https://api.onepeloton.co.uk/stats/workouts/details
https://api.onepeloton.co.uk/stats/workouts/details
https://www.pentestpartners.com/security-blog/tour-de-peloton-exposed-user-data/
https://www.pentestpartners.com/security-blog/tour-de-peloton-exposed-user-data/
https://www.pentestpartners.com/security-blog/tour-de-peloton-exposed-user-data/
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa7-server-side-request-forgery/
https://owasp.org/API-Security/editions/2023/en/0xa8-security-misconfiguration/
https://owasp.org/API-Security/editions/2023/en/0xa9-improper-inventory-management/
https://owasp.org/API-Security/editions/2023/en/0xaa-unsafe-consumption-of-apis/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2019/en/0x11-t10/

5

Developer Guide to the 2023 OWASP Top 10 for API Security

How to Prevent It as a Developer?
Developers prevent insecure access to objects by enforcing strict controls, assigning
unpredictable user identi�ers to dissuade enumeration of accounts, and checking object-
level authorization for every function that accesses a data source. Developers should
encapsulate such checks, especially if based on user input, to remove the possibility
that inadvertent errors could undermine security. Application-security and operations
professionals should require authorization checks for each request to backend data.

How Can Fortify Help?
Fortify SAST and DAST by OpenText can detect a broad range of vulnerabilities in the
Insecure Direct Object Reference (IDOR) category. IDOR can include vulnerabilities such
as Directory Traversal, File Upload, and File Inclusion. More generally, IDOR also includes
classes of vulnerabilities where identi�ers can be modi�ed via URL, Body, or Header
manipulation. The system will alert developers to cases where the user can directly choose
the primary key in the API request for a database or storage container, a problem that
often leads to this class of vulnerabilities. The system will also warn when an expected
authorization check is missing.

API2:2023—Broken Authentication

What Is It?
Authorization checks limit access to data based on speci�c roles or users, but those
limitations are not su�cient to protect systems, data, and services. Developers and
application-security teams also must properly implement capabilities to check user identity
through authentication. Despite the critical nature of authentication, the components
are often poorly implemented or improperly used—the root causes of Broken User
Authentication. Broken user authentication allows attackers the ability to assume other
user’s identities temporarily or permanently by exploiting insecure authentication tokens or
compromising implementation �aws.

What Makes an Application Vulnerable?
This common and easy-to-exploit

Developer Guide to the 2023 OWASP Top 10 for API Security

8

In addition, Fortify SAST has knowledge of the most important JSON and XML serialization
and deserialization mechanisms. Using this, the tool can detect code that does not properly
deserialize the domain transfer objects (DTOs), which could allow mass assignment of its
attributes. Some cases of information exposure and mass assignment can also be detected
using Fortify WebInspect. Finally, some countermeasures can be implemented through
adding rules to the web application �rewall (WAF).

API4:2023—Unrestricted Resource Consumption

What Is It?
APIs expose many useful business functions. To do so, they use computing resources
like database servers or may have access to a physical component through operational
technology. Because systems have a �nite set of resources to respond to API calls, attackers
can specially craft requests to create scenarios that result in resource exhaustion, denial of
service, or increased business costs. In many cases, attackers can send API requests that tie
up signi�cant resources, overwhelming the machine or bandwidth resources and resulting in
a denial-of-service attack. By sending repeated requests from di�erent IP addresses or cloud
instances, attackers can bypass defenses designed to detect suspicious spikes in usage.

What Makes an Application Vulnerable?
API requests trigger responses. Whether those responses involve accessing a database,
performing I/O, running calculations, or (increasingly) generating the output from a machine-
learning model, APIs use computing, network, and memory resources. An attacker can
send API requests to an endpoint as part of a denial-of-service (DoS) attack that, rather than
overwhelm bandwidth—the goal of a volumetric DoS attack—instead exhaust CPU, memory,
and cloud resources. Applications that do not limit the resources assigned to satisfy a request
can be vulnerable, including those that fail to restrict allocable memory, number of �les or
processes accessed, or the allowed rate of requests, among other attributes.

The server processing APIs needs to have limits in place to prevent excessive allocation of
memory and workloads, excessive requests for API-triggered operations, or excessive charges
for a third-party service without spending limits.

A common attack is to modify the arguments passed to the API endpoint, such as increasing the
size of the response and requesting millions of database entries, rather than, say, the �rst ten:

/api/users?page=1&size=1000000

In addition, if the attacker can access a backend service that charges for usage, resource
consumption attacks can be used to run up charges for the application owner. Another
OWASP example points to a reset-password feature that uses an SMS text message to verify
identity and which could be called thousands of times to increase expenses for the victim.

Applications that do
not limit the resources
assigned to satisfy
a request can be
vulnerable, including
those that fail to restrict
allocable memory,
number of �les or
processes accessed,
or the allowed rate
of requests, among
other attributes.

https://stackoverflow.com/questions/32575924/how-to-stop-hack-dos-attack-on-web-api
https://stackoverflow.com/questions/32575924/how-to-stop-hack-dos-attack-on-web-api
https://stackoverflow.com/questions/32575924/how-to-stop-hack-dos-attack-on-web-api
https://stackoverflow.com/questions/32575924/how-to-stop-hack-dos-attack-on-web-api

https://www.texastribune.org/2022/05/16/texas-insurance-data-breach/
https://www.texastribune.org/2022/05/16/texas-insurance-data-breach/
https://www.texastribune.org/2022/05/16/texas-insurance-data-breach/

11

Developer Guide to the 2023 OWASP Top 10 for API Security

How to Prevent It as a Developer?
DevSecOps teams should design a standard approach to authentication and authorization
that prevents access to requests by default, enforcing a default of “deny all.” From this
default, always apply the principle of least privilege when determining access for roles/
groups/users. Developers should ensure that authentication and authorization are in place for
all relevant HTTP verbs/methods (e.g., POST, GET, PUT, PATCH, DELETE) related to each API
endpoint. Irrelevant verbs should be disallowed. In addition, developers should implement a
base class for administrative access and management, using class inheritance to ensure that
authorization controls check the user’s role before granting access. All critical administrative
functions should use the authorization mechanism to prevent privilege escalation.

How Can Fortify Help?
By combining the static code and API analysis features of Fortify SAST with the runtime
checks of the Fortify WebInspect dynamic application security testing (DAST) suite,
DevSecOps teams can evaluate their application for broken function-level authorization
issues and continuously test production code for security weaknesses before deploying.
To detect Broken Object Function Authorization issues, Fortify SAST uses rules specifying
when an authorization check would be expected in certain programming languages and
frameworks, and the absence of such a check is reported.

API6:2023—Unrestricted Access to
Sensitive Business Flows

What Is It?
From sneakerbots to ticket bots, attacks on the inventory of online retailers through their
APIs has become a signi�cant problem for e-commerce sites. By understanding the business
model and the application logic, an attacker can create a series of API calls that can
automatically reserve or purchase inventory, thus preventing other, legitimate consumers
from gaining access to the businesses’ products or services. Any API that allows access to
a business process can be used by an attacker to impact the business and falls under the
de�nition of Unrestricted Access to Sensitive Business Flows.

What Makes an Application Vulnerable?
Application control and logic �ows are the heart of any online businesses, and as companies
move more of their operations to the cloud, those �ows can be exposed and exploited.
This excessive access may harm the business, when attackers automate the purchase of
products, create bots for leaving comments and reviews, or automate the reservation of
goods or services.

If an application o�ers an endpoint that has access to the company’s business �ow without
limiting access to the business operations behind the endpoint, then the application will be
vulnerable. Protections include limiting the number of access attempts from a single device
through �ngerprinting, detecting whether the activity originates from a human actor, and
detecting whether automation is involved.

DevSecOps teams
should design a standard
approach to authorization
and authentication
that prevents access
to requests by default,
enforcing a default
of “deny all.”

Application control and
logic �ows are the heart
of any online businesses,
and as companies
move more of their
operations to the cloud,
those �ows can be
exposed and exploited.
This excessive access
may harm the business.

Developer Guide to the 2023 OWASP Top 10 for API Security

12

Attack Examples
When Taylor Swift tickets went on sale on Ticketmaster in November 2022, 1.5 million
customers had pre-registered, but more than 14 million requests—including three times as
much bot tra�c—swamped the purchasing links and APIs as soon as ticket sales opened.
The site crashed, preventing many customers from purchasing tickets .19

The onslaught of reseller bots resembled those that ruined the launch of the PlayStation 5
in November 2020. Supply-chain issues had already limited supply prior to the launch of the
latest Sony gaming console, but the automated bots made �nding available units even harder
and led to astronomical resale prices. In one e-commerce site’s case, the number of “add to
cart” transactions grew from an average of 15,000 requests per hour to more than 27 million,
using the store’s API to directly request products by SKU number. 20

How to Prevent It as a Developer?
Developers should work with both the business-operation and engineering teams to address
issues of potential malicious access to business-�ows. Business teams can identify which �ows
are exposed through APIs and conduct threat analyses to determine how attackers could
abuse those endpoints. Meanwhile, developers should work with engineering operations
as part of a DevOps team to establish additional technical defensive measures, such as
using device �ngerprinting to prevent automated browser instances from overwhelming
and identifying patterns in behavior that di�erentiate between human and machine actors.

Operations teams should also review any APIs designed to be used by other machines,
such as for B2B use cases, and ensure that some defenses are in place to prevent attackers
from exploiting machine-to-machine interactions.

How Can Fortify Help?
Catching vulnerable and sensitive business �ows often relies on doing the basics. Companies
need to document and track all of their functioning APIs and determine which ones expose
sensitive processes and data to potential attackers. Application logic also needs to be
analyzed for logic �aws that could be exploited by attackers.

Overall, preventing Unrestricted Access to Sensitive Business Flows is more about a holistic
approach to application security and less about �nding a speci�c technology.

API7:2023—Server Side Request Forgery

What Is It?
Backend servers handle requests made through API endpoints. Server-Side Request
Forgery (SSRF) is a vulnerability that allows an attacker to induce a server to send requests
on their behalf and with the server’s level of privilege. Often the attack uses the server to
bridge the gap between the external attacker and the internal network. Basic SSRF attacks
result in a response returned to the attacker, a far easier scenario than Blind SSRF attacks,
where no response is returned, leaving the attacker with no con�rmation whether the attack
was successful.

19. Steele, Billy. “Ticketmaster
knows it has a bot problem,
but it wants Congress to �x
it.” Engadget. News Article.
24 Jan 2023. www.engadget.
com/ticketmaster-live-
nation-senate-judiciary-aP 41 >>BDC
-0.031 Tc 0.03C
-0.0355
-0(heag op-195504179.1 (etm.htmlJ
EMC
/P <</MCID 14 250 -1.369 ing the attack)23 udiciar88C
/P <</MCID 9 >>BDC
0 -2.P/P <</MCI-s[5ary-hF ar88C
/P <</MCID 9 >>BDCc0417r120.6 -5.6/MCIDP42.656ick)21.1 (e(2d
(9)Tj
EMC55.2 - (e(0D 20 >>BDC
(.)Tj
0 7c 1.29 0 Td
[(S)17 (te061e)7 (, BMu�di, T)9es ao tanetwo response W)41.3arburtcut ita D
f
Q
.369 TD
[(from TD
(knows it has a bot pr0 -uj
EMC
/P <</MCID 20 > r6hpanies)]TJ
0 h56 it Playhas a bct BMC5hpanies)]TL)P <(acesh
/P <M)T,)Tjdge �x)Tj
0Jan 202Gamted

13

Developer Guide to the 2023 OWASP Top 10 for API Security

What Makes an Application Vulnerable?
Server-Side Request Forgery (SSRF) �aws essentially are a result of a lack of validation of
user-supplied input. Attackers are able to craft requests and include a URI that supplies
access to the targeted application.

Modern concepts in application development, such as webhooks and standardized application
frameworks, make SSRF more common and more dangerous, according to OWASP.

In an example cited by OWASP, a social network that allows users to upload pro�le pictures
could be vulnerable to SSRF, if the server does not validate arguments sent to the application.
Rather than a URL pointing to an image, such as:

http://example.com/profile_pic.jpg

15

Developer Guide to the 2023 OWASP Top 10 for API Security

In 2022, a vulnerability management �rm discovered that 12,000 cloud instances hosted on
Amazon Web Services and 10,500 hosted on Azure continued to expose Telnet, a remote
access protocol considered “inappropriate for any internet-based usage today,” according
to a 2022 report .25 The inclusion of unnecessary and insecure features undermines these
security of the APIs and applications.

How to Prevent It as a Developer?
DevSecOps teams need to understand the steps necessary to create secure con�gurations
for their applications and use an automated development pipeline to check con�guration �les
before deployment, including regular unit tests and runtime checks to continuously check the
software for con�guration errors or security problems. Security-as-code can help, by making
con�gurations repeatable and giving application-security teams the ability to set standard
con�guration sets for speci�c application components.

As part of their secure development lifecycle, developers and operations teams should:

• Establish a hardening process that simpli�es the repeatable creation and maintainance of a
secure application environment,

• Review and update all con�gurations across the API stack to incorporate the new standard
consistently, and

• Automate the assessment of the e�ectiveness of the con�guration settings across all
environments.

How Can Fortify Help?
Fortify SAST can check con�gurations during the development process and spot many
types of weaknesses. Because Security Miscon�gurations occur at both the application-
code level and at the infrastructure level, di�erent Fortify products can be used to catch
miscon�gurations.

Fortify SAST scans can check application code for miscon�guration issues. During the static
analysis check, Fortify SAST can evaluate con�guration �les for security errors, including
those for Docker, Kubernetes, Ansible, Amazon Web Services, CloudFormation, Terraform,
and Azure Resource Manager templates.

Con�guration errors can also be caught during runtime. Fortify WebInspect allows
DevSecOps teams to regularly test for common security miscon�gurations. One of the
biggest strengths of DAST scanning is that it runs on the application server in a con�gured
environment, which means that the full environment—application, server, and network—
are tested all at once, giving the dynamic analysis platform a comprehensive view of the
production environment is con�gured.

25. Beardsley, Todd. “2022
Cloud Miscon�gurations
Report.” Rapid7. PDF Report.
p. 12. 20 Apr 2022.
Accessed through:
www.rapid7.com/blog/
post/2022/04/20/2022-
cloud-miscon�gurations-
report-a-quick-look-at-the-
latest-cloud-security-
breaches-and-attack-trends/ .

Security-as-code
can help, by making
con�gurations
repeatable and giving
application-security
teams the ability to set
standard con�guration
sets for speci�c
application components.

17

Developer Guide to the 2023 OWASP Top 10 for API Security

How to Prevent It as a Developer?
DevSecOps teams should document all API hosts and focus on maintaining visibility into
the data �ows between APIs and third-party services. The primary way to prevent Improper
Inventory Management is the detailed documentation of the critical aspects of all API services
and hosts, including information on what data they handle, who has access to the hosts and
data, and the speci�c API versions of each host. Technical details that should be documented
include the authentication implementation, error handling, rate limiting defenses, the cross-
origin resource sharing (CORS) policy, and details of each endpoint.

The signi�cant volume of documentation is di�cult to manage manually, so generating
documentation through the continuous integration process and using open standards is
recommended. Access to API documentation should also be limited to those developers who
are authorized to use the API.

During the application building and testing phases, developers should avoid using production
data on development or staged versions of the application to prevent data leaks. When new
versions of APIs are released, the DevSecOps team should do a risk analysis to determine
the best approach to upgrading applications to take advantage of increased security.

How Can Fortify Help?
Organizations can manage, monitor, secure, and document their API usage using the NetIQ
Secure API Manager by OpenText, which allows application-security teams to maintain an up-
to-date inventory of API assets. The Secure API Manager provides an authoritative repository
where your DevSecOps team can store and manage all of the APIs used by the organization,
allowing an easy-to-manage life cycle from API development to retirement. The software
helps improve compliance with regulations and licensing by allowing detailed analytics.

API10:2023—Unsafe Consumption of APIs

What Is It?
With the increasing use of native cloud infrastructure to create applications, APIs have
become the point of integration between application components. However, the security
posture of third-party services accessed through APIs is rarely clear, allowing attackers to
determine on which services an application relies and whether any of those services have
security weaknesses. Developers tend to trust the endpoints that their application interacts
without verifying the external or third-party APIs. This Unsafe Consumption of APIs often
leads to the application’s reliance on services that have weaker security requirements or lack
fundamental security hardening, such as input validation.

What Makes an Application Vulnerable?
Developers tend to trust data received from third-party APIs more than user input, although

19

Developer Guide to the 2023 OWASP Top 10 for API Security

Conclusion

As applications increasingly rely on cloud infrastructure, web application programming
interfaces (APIs) have become the foundation of the Internet. Companies typically have
hundreds, if not thousands, of API endpoints in their environment, dramatically increasing
their attack surface and exposing applications to a variety of weaknesses.

The release of the 2023 OWASP API Security Top 10 list is a good starting point for
companies and developers to educate themselves on the risks of API-based infrastructure
and to assess their own applications. Along with the more well-known Application Security
Top-10 list, the pair of rankings can help DevSecOps teams toward developing a holistic
approach to the overall security of their applications.

DevSecOps teams need to be aware of the security implications of APIs, how to reduce
an implementation’s vulnerabilities and security weaknesses, and how to harden their
development pipeline and the resulting API server to make it more di�cult for attackers to
compromise an application through its APIs.

The OWASP API Security
Top-10 is crucial for
cloud-native developers
building APIs. Yet,
addressing common
application vulnerabilities
like SQL injection, data
exposure, and security
miscon�guration should
take priority, as they are
frequently exploited by
cyber threats. The API
Security Top-10 is an
essential part of secure
software development
but should be secondary
to addressing general
application vulnerabilities.

The API Security Top-10 Is Not Su�cient!

For cloud-native developers speci�cally focused on creating APIs to o�er services to
other parts of an application, internal users, or for global consumption, the OWASP API
Security Top 10 list is an important document to read and understand.

However, the OWASP API Security Top 10 is not a standalone document. Developers
also need to make sure that they utilize other sources of best practices, such as the
OWASP Top 10, that are relevant to their current application and architecture. Common
application vulnerabilities -SQL injection, data exposure, and security miscon�guration-
continue to be common ways that cyber threat groups can compromise corporate
infrastructure and should be remediated quickly. In addition, some API-based applications,
such as mobile apps, require di�erent appsec hardening steps than a stand-alone
web-app, and di�erent from what may be required for connect and IoT devices. Overall,
the API Security Top 10 list is important, but it remains only a facet of the overall secure
software development lifecycle. The list, and the OWASP Top 10 list, should be used in
conjunction with any other relevant standards and best practices that are required for
the solution under analysis.

Developer Guide to the 2023 OWASP Top 10 for API Security

20

Where to Go Next

Here are the products mentioned in this document:

• Fortify API Security

• Fortify Static Code Analyzer (SAST)

• Fortify WebInspect (DAST)

• NetIQ Secure API Manager

Additional Resources
• OWASP Top 10 API Security Risks—2023

• Gartner Magic Quadrant fo Application Security Testing

• Fortify Code Security Webinar Series

• Fortify Application Security

Connect with Us
www.opentext.com

OpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes. From prevention, detection and response to recovery, investigation and compliance,
our uni�ed end-to-end platform helps customers build cyber resilience via a holistic security portfolio. Powered by actionable insights from our real-time and contextual threat intelligence,
OpenText Cybersecurity customers bene�t from high e�cacy products, a compliant experience and simpli�ed security to help manage business risk.

762-000081-004�|�O�|�11/23�|�© 2023 Open Text

